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The study reDorted here was carried out under Task Re2c-65-l 

as part of a program aimed at investigating the anomalou3 

surface reflection of Shockwaves from shallow explosions in 

deep water. Since the material in this report is of immediate 

interest to other groups, it is published in its present form 

at this time. The experimental data with which this work can 

be compared will be reported later. 

The authors wish to point out the essentially non-stationary 

nature of the entire problem, and the serious assumptions 

inherent in the stationary flow simplification U3ed in this 

paper. The senior author (H. G. S.) has suggested a possible 

attack leading to a more exact solution, which will be pre- 

sented later if time permits. 

This report is for information only, and the opinions ex- 

pressed herein are those of the authors. 
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ON THE OBLIQUE REFLECTION OF UNDERWATER SHOCKWAVES 

FROM A FREE SURFACE I 

I  INTRODUCTION 

When a Shockwave produced by an underwater explosion 

comes in contact with a free surface, its pressure must drop 

to approximately atmospheric, or more precisely, to the same 

pressure as the air shock produced at the interface. As a 

result, -i tension wave is reflected from the surface, which 

modifies the incident wave in the water. At the free surface, 

the situation of oblique reflection of a Shockwave can be 

treated as a quasi-stationary flow problem, where the pressure 

is relieved by a flow around a Prandtl-Meyer corner [L]*. As 

was first pointed out by Penney,    the flow into the expan- 

sion wedge becomes subsonic if the glancing angle of the shock- 

wave is sufficiently small. As a result, the rarefaction wave 

overtakes the incident shock front and attenuates it. This 

leads to a region of peak pressure distortion, whose boundaries 

have been calculated by Penney    and Keil [I] for a spherical 

Shockwave. 

In the present paper, an attempt is made to analyze the 

phenomenon within the distorted region. A pseudo-stationary 

approach is used, and as a result it appears that the pressure 

relief In this region takes place in two stages: Part of the 

pressure is released by means of a wave which is traveling 

faster than the incident shock; the remaining pressure is 

then relieved through a Prandtl-Meyer corner flow. On the 

basis of this treatment, it is possible to construct pressure- 

time histories for Shockwaves in the regions of anomalous 

reflection. 

♦All such letters refer to the list of references at the end 
of this report. 
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II REGULAR REFLECTION AND THE PRANDTL-MEYER CORNER FLOW 

I 
- 

The Interaction of a plane Shockwave of infinite duration 

with a free surface at a sufficiently large glancing angle, 

can be represented by a stationary flow pattern if a steady 

flow is superposed parallel to the surface. This flow is 

shown by the vector - U sec ® in Figure 1, where U is the 

propagation velocity of the Shockwave, and ® is the angle 

between the wave front and the normal to the surface. Since 

a positive disturbance of finite amplitude must travel with 

supersonic velocity (U>c , the sound velocity in the undis- 

turbed medium), this superposed flow Is always supersonic. 

This flow corresponds to the undisturbed water before the 

shock front, as observed from the moving point of Intersection 

of the shock front with the free surface. The flow behind the 

shock front is modified by a quantity u, the actual particle 

velocity behind the front. This flow, f., can be obtained by 

vector addition of the original superposed flow and u, as 

shown at the bottom of Figure 1. 

The pressure at the free water surface must remain atmos- 

pheric. AS long as the flow f. is supersonic (or sonic), this 

condition can be realized by a stationary expansion wave, 

centered at the point of intersection of the shock front with 

the surface. This is the well-known Prandtl-Meyer corner 

flow. Figure 2 illustrates this flow more clearly; the expan- 

sion wedge consists of the Mach lines of the corner flow. 

According to the Prandtl-Meyer analysis of a 2-dimension- 

al lrrotational steady supersonic expansive flow around a 

corner [L], the relationship between the angular deflection of 
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the Mach lines, n, and the pressure, P, Is given by the 

expression 

dn  - <l + f)dP 

'       (fj2 + aa>1  -  2u> -  c2)1/2 
(1) 

c and V designate the sound velocity and the specific volume, 

while a) is the specific enthalpy, defined by 

m  =(vdP (2) 

o>- is the specific enthalpy of the flow f. at the beginning 
of the expansion. 

Substitution of numerical values from the Appendix 
permits analytic integration of differential equation (1) over 
the pressure range of interest. For a complete expansion to 
zero prepare, the integral 

1 
p=0  r        P       fi 

dn =  (1-9.046 « 10 Tl-1.048* 10'DP) 
P=P^  L 

(N-2.318* 10'5P)1/,21 
P=0 (3) 

-Ip-P, 

is obtained, in which P, the pressure in psi, is evaluated 

between the limits P.,(the pressure of the flow f.), and 0. 

N is a function of the flow f. into the corner and is given by 

r.    2 

(4) N = -£. - i + 6.282 * io"bP1> 2.318« IO"
5

P1 

V, 
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The equality sign on the right hand side refers to sonic 

entry into the corner.  In the latter case, 

l| » 0.276 P1
1/2 (5) 

for moderate pressures. 

As a first approximation, the change in angle n corre- 

sponding to an expansion from P. to any pressure P in equation 

(3) is proportional to the square root of the pressure change. 

As a result, the pressure change in the expansion wedge as a 

function of the angle approximates a second order parabolic 

decay 

p = hb-tf >2] <«> 
In all practical cases, the Shockwave to be considered 

is spherical. Some general considerations applicable to this 

case are in order here. Because of the curvature of the front, 

the angle ®, the pressure, and consequently all other vari- 

ables change with time or distance from the charge center; a 

stationary flow can therefore no longer be realized. However, 

over a very small area close to the free surface, the curv- 

ature of the front is negligible, and the stationary flow 

pattern illustrated in Figure 1 is applicable _at any one time 

(a quasi-stationary flow).  If the region of interest extends 

an appreciable distance down from the surface, the shock front 

and the expansion wedge become arcs (the latter only as an 

approximation). Superposition of a radial flow, parallel to 

the surface at the surface, as illustrated in Figure 3» makes 

the entire shock front and the expansion wedge at the surface 

quasi-stationary. The expansion wedge farther down, however, 

will not be completely quasi-stationary. The greater the 

t 
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curvature of the arcs and the greater the distance between the 

shock front and the expansion wave, the greater will be the 

deviation from the quasi-stationary flow. For the geometries 

considered in this paper, the deviation is not serious and can 

be neglected. Thus, it becomes possible here to consider a 

stationary flow pattern even in the case of a spherical shock- 

wave. This makes it feasible to extend many of the results 

obtained in the plane case to the actual spherical problem by 

an analogy to the method of images used in acoustics. 

f 

■ 

III THE CRITICAL CONDITIONS AND THE BOUNDARY 
OP THE ANOMALOUS REGION 

For a plane shock wave, as shown in Figure 1, the flow f. 

into the expansion wedge is a function of the glancing angle 9 

and the pressure P. This is true because the propagation 

velocity U and the particle velocity u depend only on P. If 

for a Shockwave of given pressure, the angle 6 is decreased, 

the absolute magnitude of f, decreases, ai.d eventually f. 

may become sonic. In that case, the initial Mach line of the 

expansion wedge must be perpendicular to the flow f.; the 

flow out of the wedge remains supersonic. If the flow f. 

becomes subsonic, the entire Prandtl-Meyer treatment collapses, 

and such centered expansion at a corner is no longer possible. 

The point where the flow f. is sonic constitutes the 

boundary between regular and "anomalous" surface reflection. 

For the case of an infinite plane Shockwave, the condition of a 

sonic flow f1 leads to a relation between the shock pressure P 

and the critical glancing angle ®crit: From the velocity 

triangle in Figure 1, it follows that 

l> 
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(U sec®-u cos®)2 - u2sin2® - f2 . (7) 

But f,   m  c (the local sound velocity) is the condition of 
sonic flow; therefore, 

(U sec®crit - u cos®crit)2 " u2sin2®crit = ** 

or ® cr 
. tan"1^2-«!-«)2]1/*] 

(8) 

(9) 

where U, u, and c are functions of the shock pressure P. 

The fact that the first Mach line of the expansion is 

perpendicular to the sonic flow f., leads to the expression 

*crit « 5ln_1 U 8in % critj (10) 

where A is the angle which the first expansion Mach line makes 

with the perpendicular to the free surface. This angle becomes 

very small for pressures less than 10,000 psi and can usually 

be neglected.  In other words, the first Mach line can be 

considered as being perpendicular to the free surface. 

If the plane Shockwave of the preceding discussion Is 

considered to be a small section of a spherical Shockwave at 

the free water surface, the pressure P and its functions U, u, 

and c become functions of the radial distance from the charge 

center. Substitution of the numerical values given in the 

Appendix transforms equation (9) into 

tan ® crlt 
1.197 ; 10" P^ 

.1+5.367 " 10"bP 

1/2 
(11) 

3 
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and  tan •-_,«. - 1.820 r~,6° - 1.353 r~1,8° Pentolite crit 

- 1.574 r"'565 - .8736 f-1'695 TNT 

where r represents the radial distance from the charge center 
expressed in charge radii*. 

Thus, for a spherical wave, there exists a point at the 

surface beyond which the reflection is anomalous. For any 

particular position of the charge, thut is for a charge at 

depth d below the surface, this point will be at a definite 

radial distance, r ... , from the charge center, given by 

?crit = a(1-^9 + -3C15 ?crit°)1/2 Pentollte 
(13) 

= 3(1.449 + .'4047 ? i;P) '2    TNT 

As d increases, r ., increases, and for d^l2, expres- 

sion (13) reduces to 

7crit = *224 32,^°     Pentolite 

(14) 
■ .354 <32,3°     TNT 

This shows that a region of anomalous surface reflection 

exists for every charge depth**. The distance from the charge 

center to the beginning of this region at the surface, r  .., 

increases rapidly with charge depth. 

*Throughout this paper, symbols with bars over them will 
represent distances expressed in charge radii. 

**0f course, the numerical equations apply only as long as the 
Shockwave pressure-distance relationships, as given in the 
Appendix, are valid. According to reference [C], this is true 
to relatively large distances. 

9 

1 

crit ' 

j) 
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: 

Next, consider a plane Shockwave which suddenly interacts 

with the free surface at a glancing angle Which is less than 

the critical angle. From the point of intersection of the 

shock front with the surface, a signal will originate which 

propagates with the local sound velocity c into the local 

particle stream of velocity u. Since the glancing angle is 

less than the critical angle, the horizontal velocity compo- 

nent of the signal is greater than that of the shock front. 

Thus, the surface signal overtakes the shock front.  This is 

illustrated in Figure 4. 

The path of descent of the primary surface signal must 

be the line along which the Shockwave has the same velocity 

as the surface signal.  This is the case inhere vector addition 

of c and u equals U, or in other words where c equals f.. 

This condition is analogous to the critical condition at the 

free water surface, so that the path of descent may be con- 

sidered a free surface, which the incident shock intersects 

at the glancing angle 8 lt, The shock front below this path 

is unaffected by the surface signal, above this path it is 

attenuated. The region where the shock front is attenuated 

constitutes the "anomalous"region. 

According to these considerations, Keil [I] has defined 

the boundary of the anomalous region as the curve which 

intersects the radius vector r from the charge center at the 

critical angle. This leads to a differential equation for 

the rate of descent of the boundary: 

dy crit = tan • 
dr crit 1 - ( 

a-yCrit. 1/2  d-y crit 
(15) 

where y .., expressed in charge radii, is the depth of the 

anomalous region boundary beneath the free surface. For a 

10 

> 
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spherical wave, the critical angle is a function of the radius 

vector r, as shown in equation (12). Substitution of the 

appropriate expressions in the differential equation (15) and 

integration* lead  to the expressions 

Pentollte 

d"y°rlt - sin (3.033 r-'60-.752 r"1'80 + .497 r"^
00 - k<) 

TNT (16) 

= sin (2.78^ r"-565-.515 r"1'695 + .257 r"2'8^ . k.) 

k1 is a constant of integration evaluated at the point of 
critical surface reflection; that is, at r = r„ .,, y  ., crlt' ''crit 
must be 0. 

In the preceding derivation, the path of a signal origin- 

ating at the point of critical surface reflection was traced. 

It appears reasonable that this signal is indeed the first to 

arrive at the shock front at a given depth y; however, no 

proof is yet at hand that a signal originating at the surface 

prior to the point of critical reflection must arrive at the 

shock front at a later time. 

IV THE ANOMALOUS REGION 

The discussions of the previous section lead to a defin- 

ite picture of the Shockwave in the anomalous region: a spher- 

ical shock front invades the undisturbed water. An expansion 

wave originating from the free surface has overtaken the 

incident shock front near the surface, and its head intersects 

the shock front at the known depth y  ...  The shock is atten- 
C X 1 Jj 

uated when overtaken by this rarefaction wave. The shock 

*W. Kostow, in a private communication, pointed out that the 
differential equation (15) > due to Keil [I], can be integrated 
analytically. 

12 

' 
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pressure will decrease from the free water value at y .. to crlt 
a value P at the surface, In a manner depending on the 

pressure profila of the rarefaction wave. 

At this point the assumption is made that the conditions 

in and immediately below the anomalous region can be repre- 

sented approximately by a quasi-stationary flow pattern 

together with a nonstationary rarefaction wave. Figure 5 

illustrates such a flow pattern for a plane Shockwave.  A flow, 

-Up sec ®, which makes the undistorted shock front stationary, 

is superposed. The head of the nonstationary rarefaction wave 

intersects the shock front at the boundary of the anomalous 

region, that is, at the depth y  .,.  The point of intersec- 

tion of the actual shock front with the surface must coincide 

with the stationary rear of the nonstationary rarefaction 

wave. The remaining pressure must be released at this point; 

this is accomplished by a stationary centered expansion wave, 

the Prandtl-Meyer corner flow. 

The pressure P_ at the rear of the nonstationary rare- 
B 

faction wave can be found from the condition that the flow 

should be stationary there. This leads to the following 

procedure: The flow into the nonstationary wave is split 

into components parallel and perpendicular tc the wave. 

Parallel component = 

(uV, sec® - u„ cos®) siny - up sin® COSY (17) 

Perpendicular component = 

(uV, sec® - u„ cos®) cosy (18) 
r r 

where Y ■ (® **.-•)• The wave accelerates the perpendicular 
C i/1 o 

13 
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component of the flow. For a plane wave, the acceleration 

depends only on the overall pressure change. At the rear of 

the wave, the perpendicular component of the flow must be 

equal to the local sound velocity.  Thus, 

= (U„ sec® - u„ cos®) cosy + \ V dP (19) 

The last term, the Rlemann function, represents the velocity 

increment which the nonstationary wave imparts to the flow. 

The expression can be solved for the pressure P at the 

beginning of the stationary expansion centered at the surface. 

Actually, the shock front in the anomalous region is bent 

back and, because of Its lower peak pressure there, propagates 

at a lower velocity than the unattenuated shock. As a rough 

approximation, it can be assumed that these two effects cancel 

as far as the horizontal propagation velocity of the wave is 

concerned.  In other words, 

Up s^c® = U sec0    = U secjtf. 
y 

(20) 

where 0 represents the glancing angle of the attenuated front, 

and the subscripts s and y refer to the surface and to any 

depth y in the anomalous region respectively (see Figure 5). 

Equation (20) states that the superposed flow Up sec® makes 

the entire shock front stationary with respect to the surface. 

Substitution of the numerical values from the Appendix into 

this equation leads directly to a relation between 0    and P , 
y    j 

the peak shock pressure at any depth y; 

P = 1.863 » 105 
<J 

(1 + 5.367 » 10" Pp) cos# y 
cos« - 1 (21) 

15 
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It can be shown that rotation is introduced into a stream 

on passing through a bent Shockwave [0],  In the present case, 

this effect causes the rarefaction wave to bend back slightly 

close to the surface. At the relatively low pressure of 

interest here, this bending is small and can be neglected. 

Next, equation (19) is evaluated for the quasi-station- 

ary case of a plane wave, whose parameters change with dis- 

tance from the origin like those of a spherical Shockwave. 
This leads to the expression 

P3 = 1.570 * 10
5 dr"1*00 - 3.63 * 103 r-1'20 Pentolite 

= I.36O» 105 dr"1,5 5 - 3.80 * 103 r"1*13 TNT f 
For the actual spherical case, an analogy to the method 

of images permits arcs to be substituted for the plane wave 

configuration in Figure 5. Account must be taken of the 

spherical divergence term arising from the equation of conti- 

nuity. This term, which must appear on the right hand side of 

equation (19) > Is approximated by 

-,    f.xtotal 

JTP       Pd*  (?» 'total) (23> 

where x is the distance from the back of the nonstationary 

wave perpendicular to its direction of propagation, x. , , is 

its total width and p is the density of the undisturbed water. 

(23) is conveniently expressed as a correction term 

, q *total PP (24) Ärspherical     r K     ' 

which must be added to the incident surface pressure of the 

16 
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plane case, equation (22).  The symbol q in equation (24) 

represents a fraction, which depends on the pressure profile 

of the rarefaction wave. Its value, based on experimental 

observations, appears to be approximately .85. 

The pressure profile of the rarefaction wave is related by 

a geometric argument to the pressure-depth variation along the 

shock front in the anomalous region. The latter is related to 

the angle 0    of the shock front in the anomalous region by the 
stationary flow assumption and the Rankine-Hugoniot conditions 

[see equation (21)]. From various qualitative arguments, the 

pressure, and therefore also the angle 0,  is expected to 
change most rapidly with depth near the surface and most slowly 

at the lower edge of the anomalous region. This suggests a 

power law for the angle 0    as given by the expression 

0y - (J*s - ®)d - y)n + • (25) 

where y1 = y/ycrit Is the "relative depth" in the anomalous 

region, and n is a constant, whose value from actual experi- 

ments appears to be approximately 4. 

Knowledge of the angle 0    as a function of depth permits 
a rough estimate of the total lag of the actual shock front at 

the surface behind one which is not attenuated by surface sig- 

nals. This is given by the following equation for the plane 

wave case: 

£total " \lCrlt  tan *y d* - *crit tan8 <26> 

which becomes 

r      yCrit
tan * (27) Ltotal ~ (n + 1)  (27) 

when $ = (0    -  8) is relatively small.  The lag at the surface 
behind that at any depth y in the anomalous region is similarly 

17 
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Given by 

L *crit tan* M \ n+1 
-  (n +1)— [1 - (1-y}    J (28) 

These equations, which were derived for plane waves, are also 

approximately correct for the spherical case. 

The pressure of the nonstationary rarefaction wave Is 

constant along a line for which x, defined in connection with 

equation (23), is constant.  Thus, the pressure profile of 

the rarefaction wave follows from the profile of the shock 

front in the anomalous region [given by equations (21) and 

(25) as discussed previously] if the corresponding values 

of x and y along the shock front are known.  This relation 

between x and y follows from geometric considerations and is 

given by the approximate expression 

;an $ «\n+l d+y. rit 

x « n + 
j [l-(l-y)"^] + y [  -cri* + sin7] - y :Z  ycrit 

"2T 
tani , . +Jcrit ,  .nv  ^crit _____ + _  + sinY . _____ 

(29) 

where x = x/x. . , measures the relative distance through the 

nonst;ationary wave. Note that 5c - 0 at the stationary end of 

the wave, and x = 1 at the head of the wave. 

The flow through a stationary expansion wave was solved 

for the plane case in Section II of this report. Thus, in 

equation (3)* Pg must be substituted for P^, and the total 

velocity of the flow into the wedge is given by 

(1 + 8.449 ■ 10"6Pj2 + 
(1+2.463 x 10 6P_)  siny"11 

cos® (30) 

This provides everything to calculate the total deflection n 

18 
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of the Mach lines at the Prandtl-Meyer corner. From this and 

from the definition of 7, stated in conjunction with equations 

(17) and (18), it follows that y , the angle which the rear of 

the Prandtl-Meyer expansion wedge makes with the perpendicular 

with the surface, is given by 

- 

I 

Y -  y + r| (31) 

It appears worthwhile here to make a few remarks on the 

assumption of stationary flow, which was Introduced in this 

section. Actually, the plane wave case consists of a plane 

incident shock front and an approximately cylindrical expan- 

sion wave, which is attenuating the incident shock. The 

attenuated part of the shock front is traveling at a slower 

rate than the unaffected part and thus eventually bends back 

near the surface. Strictly speaking, it is only possible to 

make the unattenuated part of the shock front stationary at 

any one time; however, the theory derived in this section 

assumes a stationary flow through the entire Shockwave config- 

uration. The approximate character of this treatment shows 

up in nonstationary effects at the surface: the superposed 

flow through the nonstationary rarefaction wave is not quite 

perpendicular to the wave front. The flow through the 

stationary rear of this wave is thus slightly greater than 

sonic, a condition which tends to increase the incident 

pressure at the surface point. 

19 
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V  THE CONSTRUCTION OF PRESSURE-TIME HISTORIES 

If the theory developed in the preceding sections is to 

be of practical significance, it must predict satisfactorily 

the pressure-time history of a Shockwave at a distance r from 

the charge center and at a depth y below the free surface. 

A procedure which yields approximate pressure-time histories 
is outlined in this section. 

To begin with, the quantities r, 3, 8, ®Crit' ^crit' 
PF' 

and P0 for the plane case are calculated from the known charge 

weight and geometry of the problem by means of the appropriate 

equations in the text. A scaled diagram of the shock front 

is then drawn, the bending back effect near the surface being 

neglected at first. At the critical depth, ycri+-> 
on ^he 

shock front, a line is drawn which makes the angle ®cri+- with 
the radius vector ? from the charge center. The line is 

extended back until it intersects above the free surface a 

line passing through the charge center and perpendicular to 

the surface. The point of intersection, A in Figure 6, which 

in a sense represents an "image" point for the nonstationary 

20 
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rarefaction wave, serves as a center for two concentric cir- 

cles passing through the critical point on the shock front 

and through the surface point of the shock front respectively. 

The distance between these circles represents a first approx- 

imation to the width, x\_ . , , of the nonstationary wave. It 

is now possible to calculate APSDherj.ca2 
and p for the sPher>- 

Ical caise, and hence also 0 , 0  , $, and E. .   ..  If the 

latter quantity is appreciable, it must be included in 5c, ,._.,, 

and values for P , 0 ,  etc., may have to be recalculated. 

Finally, y Is calculated, and the corresponding "image'! point, 

B in Figure 5,  is found by drawing a line through the correc- 

ted surface point of the incident shock, which makes the angle 

y with the free surface. The point of intersection of this 

line with the perpendicular to the surface above the charge 

serves as the center of a circular ar'c representing the end of 

the centered expansion. The final diagram is as Indicated in 

Figure 6. 

Next, a path through the Shockwave configuration Is con- 

sidered which corresponds approximately to the way the shock- 

wave passes a gauge. All distances are then converted to a 

time scale.  It is sufficient to use the sound velocity in 

undisturbed water for this purpose. The peak shock pressure 

and the pressure decay due to the nonstationary and the sta- 

tionary centered wave are calculated from the appropriate 

equations in the text. The results are superposed on the 

pressure-time decay curve of the free water Shockwave as given 

In equation (A4) of the Appendix, and the resulting curves are 

smoothed out.  The approximate pressure-time histories thus 

drawn represent the results obtainable with the present theory. 

In conclusion, it may be worthwhile to discuss the range 

of applicability of the present work. In general, it is 

possible to calculate pressure-time histories for charge 
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depths of 3 charge radii or more, at distances where the free 

water Shockwave peak pressure Is 10,000 psl or less. In this 

case, the equations are all in analytical form, and agreement 

with experiment* appears satisfactory.  It should be noted 

that the present theory was derived fcr the ideal case of a 

semi-infinite homogeneous medium and a perfectly plane free 

boundary. However, under actual experimental conditions, 

other factors enter - such as surface roughness, temperature 

and density gradients in the undisturbed medium   (G], the 

presence of a solid bottom, etc. Their effects depend on the 

size and locale of the particular explosion and must be 

investigated separately. Finally, it should be pointed out 

that the present results do not apply to charge depths of less 

than 2 charge radii. Here the assumptions of the theory are 

no longer satisfactory, and in addition, the very difficult 

problem of an air-backed explosion arises. It is felt that 

for these very shallow charge depths, more work, especially 

experimental, is necessary. 

* See References [EJand [Q] . 
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APPENDIX 

FREE WATER SHOCKWAVE PARAMETERS 

For a shock front moving through a fluid medium, the 

hydrodynamic and thermodynamic transitions are specified by 

the Rankine-Hugoniot relations; for an expansion wave, on the 

other hand, isentropic change^ are applicable.  If the initial 

state of the medium is known, and if sufficient P-V-T data is 

available, both cases can be expressed completely in terms of 

one independent variable - for example the pressure change. 

For the relatively low pressure changes applicable to this 

report, the isentropic and the Hugoniot curves for water are 

almost identical and differ but little from the isothermal. 

The following Rankine-Hugoniot parameters for fresh water, 

initially at rest and at 20°C and 1 atm., have been calculated 

with the aid of references [A,H,J] and are quite satisfactory 

up to pressures of 30,000 psi.  For much higher pressures, the 

numerical values given in reference [P] should be used.  The 

following relations hold for this low pressure region: 

U = c0(l + 5-367 *10"
6 P) 

u = cQ(2.89 * 10"
6 P) 

U - u = c (1 + 2.463 * 10"6 P) (A1) 

c = c0(l + 8.449 « 10"D P) 

where P is the excess pressure in psi, U is the propagation 

velocity of the Shockwave, and u and c are the particle 

velocity and local sound velocity behind the shock front, 

c , the sound velocity in the undisturbed water (20 C and 

1 atm.)» is 1483 meters/second. 

An equation of state for water, applicable to the true 

as well as the Hugoniot adiabatic up to a pressure of 30,000 

o 4 
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psi, Is given by the expression 

V = 1.00177 (1-3.04 * 10_6P + 2.3 " 10_11P2)        (A2) 

where V is the specific volume of the water, and an initial 
state of 20°C and 1 atm. is assumed. 

The experimental free water Shockwave peak pressure data 
are conveniently expressed in terms of the initial charge 

radius  For pressures below 30,000 psi 

Pp = 2.77* 105 r-1-20 Pentolite, /o = I.63 gm/cc [F] 

Pp = 2.07* 10
5 r"1,13 TNT, /o - 1.55 gm/cc [D] 

(A3) 

where P„ is the free water peak pressure in psi, r is the 

radial distance from the center of  the charge expressed in 
charge radii, and /o  is the loading density. 

The free water pressure decay behind the shock front, 

observed at a fixed point, is given by the expression 

where 
t  . Ppe-V'

9 Pp ^ 15,000 psi 

0 = 31.I W1/3 r'23 Pentolite, /o  - I.63 gm/cc [F](A4) 

0 = 41.9 w1/3 r*18 TNT,/O - 1-55 gm/cc [D] 

Here P is in the same units as Pp, t is the time after shock 

front arrival in microseconds, 0 is the time constant in 

microseconds, and W is the charge weight in lbs. This formula 

is valid only up to t « 9. 
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